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Abstract.  Copula models are becoming increasingly popular tool for modeling 
dependencies between random variables, especially in such fields as biostatistics, 
actuarial science, and finance. The purpose of the present paper is to provide 
preliminary discussion about the project aimed to investigate models and inference 
methods for multiple lives–based insurance data by means of copula. In the life 
contingency models for several individuals,  the life time of insured individuals 
have been assumed to be mutually independent. This means that for combination 
of lives, the life time probability of one live and life time of another lives do not 
directly impact each other. Independence assumption in multiple lives contigency 
models is often considered becauce this is more mathematically tractable to 
compute straightforwardly actuarial present value or benefit premiums and 
reserves. However, this may be unrealistic because intutitively, life times of several 
associated individuals, such as married couples, can exhibit “dependence” because 
of such conditions as common disaster, common life style, or the broken–heart 
syndrome. Using actual data on mortality of spouses that hold a last–survivor 
annuity policies in Indonesia, this research project will apply the basic concepts of 
copula inference in empirically investigating the presence of dependence in 
multiple lives–based insurance contract. There is a growing number of papers that 
explore the issue of dependencies on joint life times contracts, but no paper that 
has provided a detail lists of inference methods in copula modeling for multiple 
lives theory. 
 
Key-words: copula function, multiple lives model, joint survival function, 
conditional copula, IFM method, Bayesian estimation. 
 

1 Introduction 
One important issue in actuarial practices is to model, in a much efficient way, the 
dependence of random life time of several individuals. Developing and finding the 
good model for this problem become absolutely necessary in insurance. The theory 
and the markets urged the economic agents to combine individual components. 
Insurance or annuities products covering several lives, like last–survivor annuities 
for a married couple for instance are increasingly demanded and have to be fairly 
priced. Similarly, finance instruments based on more than one asset, like multi–
name credit risk–bearing derivatives, are widely used and have become standard. 
As part of a whole, random times–to–event behaviour are seldom independent and 
can even have rather intricate dependence structures. Therefore, flexible 
multivariate models and good inference methods are called for. 
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Formerly, in finance (mainly) and in insurance (to some extent) there were two 
main approaches to the dependence modelling question: independence or 
multivariate normality. Either the several risks were admitted to be independent 
like in a portfolio of insurance policies, or multivariate normality was assumed as 
in the classical analysis of financial time series. In each case, risk aggregation is 
straightforward but often too far from providing realistic models. Similarly, when 
we are dealing with insurance policies insuring a group of lives, the premiums or 
reserved that we calculate under life time independencies assumption may be too 
far from the fair one.    

A multivariate model has two components: the univariate (marginal) one, which 
characterizes each of the variables and the dependence structure between these 
marginal variables. This obvious separation can be specified in mathematical terms 
and it is exploited for modelling in this proposed study. The dependence structure 
of the random variables is known as the copula. Through the combination of 
copula with specific univariate distributions it is possible to construct an infinite 
number of multivariate distributions which we will refer to as copula–based 
models. 

The notion of a function characterizing the dependence structure between several 
random variables comes from the work of Hoeffding in the early forties. 
Independently, other authors introduced related notions after-wards but it was in 
1959 that Sklar [36] defined and named as copula a functional that gives the 
multivariate distribution as a function of the univariate marginal distributions. 
Allowing for the study of the dependence structure apart from the univariate 
behaviour of each variable, copula became very useful. The literature kept growing 
as the interest in copula increased, for instance in environmental data modelling. 
In the late nineties this notion was brought into finance and insurance problems. 
In 1997, Wang [39] proposes copula for modelling aggregate loss distributions of 
correlated insurance policies. Frees and Valdez [10] in 1998 and Klugman and 
Parsa [22] in 1999 use copula to model bivariate insurance claim data. Embrechts 
et al. [7] give a comprehensive overview of the application of copula to finance in a 
preprint already available on-line in 1999. 

By now, the theory of copula is well established. On the other hand, the literature 
on inference questions is still scarce. References like Genest et al. [12], Genest and 
Rivest [13], Joe [20] and Oakes [31] are important in this context. We can find 
copula models fitted to multiple lives–based insurance in Anderson et al. [1], Frees 
et al. [9], Youn and Shemyakin [40], and Youn et al. [41]. Our interest lies on 
parsimonious multivariate copula–models of joint survival analysis, able to capture 
the relevant facts of insurance data and on the inference methods for those 
models. Such fitted models are essential to accurately estimate functionals of 
dependent life times, pricing insurance contracts based on more than one live and 
evaluate risk measures. 

The primary purpose of this research project is to investigate copula models 
together with the proper inference methods for a broad context of multiple lives 
analysis and dwell on one particular problem of two associated lives. 
Straightforward copula analysis based on mixing marginal distribution functions 
as suggested in [1] and [9] might work succesfully or not work at all depending on 
particular structure of association between two lives. 

Section 2 discusses the basic definitions, properties, and examples of several types 
of copula functions. Here we will discuss in detail the types of copulas, which 
found their applications, for instance, in the analysis of extremes in financial asset 
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returns, and also the types of copulas, which seem to better fit the problems of life 
time analysis.  

Section 3 is dedicated to the formulation of the range of multiple lives analysis 
problems, which we are going to consider. A special attention is paid to the effects 
of left truncation and right censoring on data. Joint first–life and joint last–survivor 
functions, and their relationship to the bivariate survival function are discussed. 

In section 4 we explain approaches we will consider in our project, which allows for 
the estimation of joint first–life and joint last–survivor functions with the help of 
joint bivariate survival function. We briefly discuss the estimation methods we use 
to empirically estimate and infer copula models for general multivariate survival 
functions. We also explain the properties of these estimators in brief. 

In section 5 we will discuss the conditional bayesian copula model suggested first 
in [21]. Its construction is based on the application of copula mixing to conditional 
rather than to marginal survival functions. It allows for an explicit utilization of the 
prior information available on the conditional survival functions. The discussion of 
why this approach should be sufficient for the estimation of the first–life context, 
but may fail for the last–survivor context, will be briefly given. 

In section 6 a numerical data example for the application of copula analysis, which 
was previously discussed in section 2, is explained. It will be discussed copula 
models that will be considered to analyse the data. In the end part of this section, a 
potential application of join survival analysis to actuarial science is discussed and 
some suggestions for that issue are given. Section 7 concludes.  

The results of this research can have far–reaching implications to the practicing 
actuary who may be concerned about the financial consequences of assuming 
independent life length of a pair lives when in fact there may be forces driving 
dependencies. The actuary can be equipped with better methods to make more 
informed decisions.  

Whilts the literature on copula is devoted either to probabilistic theory, to inference 
methods or to applications, moreover, this research will combine of these three 
modeling aspects. Therefore, the results of this research will contribute 
considerably to the scientifics related literatures and to making the new developed 
tools known to a wider audience of practitioners and researchers alike. 

2 Modelling Dependence with Copulas  
Suppose that a d–dimensional random vector X = (X1, . . . , Xd) has the distribution 
function 

F(x1, . . . , xd) = Pr(X1 ≤  x1, . . . , Xd ≤  xd). 

One can decompose F into the univariate marginals of Xk for k = 1, 2, . . . , d and 
another distribution function called a copula. Refering to Joe in [20], a function F 
with support Rd and range [0, 1] is a multivariate distribution function if it satisfies 
the following: 

i) It is right–continuous; 

ii)  F(xl i m
kx →−∞

1, . . . , xd) = 0, for k = 1, 2, . . . , d; 

iii) 
,

l i m
kx k→−∞ ∀

F(x1, . . . , xd) = 1; and 
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iv) For all (a1, . . . , ad) and (b1, . . . , bd) with ak ≤ bk for k = 1, 2, . . . , d, we 
have  

1

1

1

2 2
...

1 ,...,
1 1

... ( 1) ( )d

d

d

i i
i di

i i

F x x+ +

= =

− ≥∑ ∑  0, 

where xk1 = ak and xk2 = bk. 

A copula is a multivariate distribution function with standard uniform (0, 1) 
margins. An equivalent definition that provides some copula properties follows. 
Supoose u = ( u1, . . . , ud) belong to the d-cube [0, 1]d. A copula, C(u), is a function 
C: [0, 1]d → [0, 1] satisfying the conditions: 

i) For all (u1, . . . , ud) in [0, 1]d, if at least one component ui is zero, C(u1, . . 
. , ud) = 0; 

ii) For ui ∈ [0, 1], C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, 2, . . . , d}; 

iii) For all [u11,u12] x . . . x [ud1, ud2] d–dimensioanl rectangles in [0, 1]d,  

1

1

1

2 2
...

1 ,...,
1 1

... ( 1) ( )d

d

d

i i
i di

i i

C u u+ +

= =

−∑ ∑  ≥ 0.  

The ability of a copula to separate the dependence structure from the marginal 
behaviour in a multivariate distribution comes from Sklar’s theorem in [36].  
According to Sklar’s theorem, when we have a d–dimensional distribution function 
F with univariate margins F1, F2, . . . , Fd and the ranges of Fi are Ri, for i = 1, 2, . . 
. , d, then there exists a unique function H, defined on R1 x R2 x . . . x Rd such that  

F(x1, . . . , xd) = H(F1(x1), . . . , Fd(xd)). 

The extension of the function H to [0, 1]d is a copula C. For C such an extension of 
H, we have that 

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). 

The verifying of the theorem can be seen in [20, page 41]. If F1, . . . , Fd in Sklar’s 
theorem are continuous, the function H coincides with the copula C which is then 
unique. 

Besides the ability of isolating the dependence structure of a multivariate 
distributions, the copula provides a way of constructing distributions from given 
margins. Sklar then stated that given univariate distribution functions F1, . . . , Fd 
and a d–dimensional copula C, the function defined by 

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))     (2.1) 

is a d–dimensional distribution function with univariate margins F1, . . . , Fd. For 
the proof, see [20, page 41]. 

So we are able to write the joint distribution as a function of the copula and the 
univariate marginal distributions. As the copula does not depend on the univariate 
marginal distributions, we can say that it capture completely all the information 
about the dependence between the variables. For this exposition, from here on we 
will refer to a copula and a dependence structure indifferently. We will refer to a 
statistical model given by a multivariate distribution written like (2.1) as a copula–
based model. 
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Some important concepts in the construction of special types of copula–based 
statistical models are quantile functions, probability–integral and quantile 
transformations. Suppose that random variables X, X1, . . . , Xd have distribution 
functions F, F1, . . . , Fd respectively.  

i) The quantile function of F is defined for all u in (0, 1) by the generalised 
inverse of F: F←(u) = inf {x ∈ R : F(x) ≥ u}. 

ii) The probability integral transformation is the mapping T : Rd → [0, 1]d, (x1, 
. . . , xd) → (F1(x1), . . . , Fd(xd)).  

iii) The quantile transformation is the operation T← : [0, 1]d → Rd, and (u1, . . . 
, ud) → (F1

←(u1), . . . , Fd
←(ud)). 

F–1 denotes the usual inverse function of F and is a particular case of F← when F is 
continuous and strictly increasing. 

It is well–known that, if U is a uniform random variable on (0, 1), then F←(U) has 
distribution function F. On the other hand, the distribution function F of a random 
variable X is continuous if and only if F(x) is uniformly distributed on (0, 1). 

Suppose that Fi is continuous and write Fi(xi) = ui for i = 1, . . . , d. Making these 
substitution in (2.1), we obtain  

C(u1, . . . , ud) = F( )     (2.2) 1 1
1 1( ), ..., ( )d dF u F u− −

for (u1, . . . , ud) ∈ [0, 1]d, which is an explicit expression for the copula as a 
function of the joint and the univariate marginal distribution functions. 

Consider one example as follows. Suppose that we have the bivariate logistic 
distribution function given by 

F(x, y) = exp (( 1/
x y ) )θθ θ− −− + , x > 0, y > 0, θ ≥ 1. 

We can rewrite this function in a more convenient form as follows: 

  F(x, y) = exp   (2.3). ( ) ( )( )1/
1/ 1/l og l ogx ye e

θθ θ− −⎛ ⎞− − + −⎜ ⎟
⎝ ⎠

The margins of a bivariate logistic are standard Fréchet. It means that they have 
distribution function F(z) = e–1/z for z > 0. Therefore, one can readily obtain the 
copula function C of a pair of random variables with bivariate logistic distribution 
from (2.3) using (2.2), leading to  

C(u1, u2) = exp ( ) ( )( )( )1/

1 2l og l ogu u
θθ θ− − + − ,   (2.4) 

where  θ ≥ 1 and (u1, u2) ∈ [0, 1]2. 

The family of copula function, like in the previous example, is known as Gumbel, 
Gumbel–Hougard or logistic copula. This copula family has the characteristics that 
are frequently suitable for modelling financial or insurance data. 

Copula has a very interesting feature, that is invariance property. The formal 
explanation of invariance property is as follows. Suppose that C be the copula of 
the random vector X = (X1, . . . , Xd) and Ri the range of Xi, for i = 1, . . . , d. If the 
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function gi : Ri → R for i = 1, . . . , d are continuous and strictly increasing a.s., C 
is still the copula of (g1(X1), . . . , gd(Xd)). If the univariate marginal distributions are 
continuous then the functions gi only have to be increasing a.s. in order to keep 
the invariance of C. 

The invariance property means that copula are the framework to study dependence 
properties which are invariant under increasing transformations of the individual 
random variables. Consider a set of dependent insurance claims and we want to 
come up with a multivariate distribution as a model for the losses. The joint 
distribution for the losses will have the same copula as the one for the logarithm of 
the losses or for the integral-transforms of the losses. So, in terms of copula 
modelling, we are indifferent with which of the three marginal scales we work (see 
15). 

In many applications, the interesting model is sometimes defined via the so–called 
survival family rather than the copula family itself. This modeling approach is 
usually used, in many cases, in modeling dependecies between life times of several 
objects. The survival copula appears as the function which relates the joint 
survival function of a multivariate distribution with the survival functions of the 
univariate margins. The formal proposition (for the proof see [27, page 28]) is as 
follows. 

Suppose we have the distribution function F of the random vector (X1, . . . , Xd), 
with marginal distribution functions F1, . . . , Fd respectively. Then, there exists a 

copula C  such that  

1 1 1( , ..., ) ( ( ), ..., ( ))d dF x x C F x F x= d ,  

where 1( , ..., )mF x x  = 1 1Pr ( , ..., )m mX x X x> >  for m = 1, . . . , d. Furthermore, 
in the bivariate case if C is the copula of (X1, X2) then  

1 2 1 2 1 2( , ) 1 (1 ,1 )C u u u u C u u= + − + − − . 

The proof of the above proposition we can see in [27, page 28]. 

In the final part of this section, we give some examples of copula important for life 
times depedencies modeling in insurance and finance. First we give an example of 
so–called explicit copula and then two examples of implicit copula. An implicit 
copula is obtained from a multivariate distribution function thorough (2.2). The 
copula is said to be explicit, when the expression which defines the copula is not 
written as a function of the joint and marginal distribution functions. 

One example of explicit copula is Clayton copula. The Clayton copula with 
parameter θ ∈ (0, +∞) is given by: 

1/

1
1

( , ..., ) ( 1) 1
d

d i
i

C u u u
θ

θ
−

−

=

⎛ ⎞= − +⎜
⎝ ⎠
∑ ⎟  , (u1, . . . , ud) ∈ [0, 1]d. 

The first example of implicit copula is Gaussian copula. For a d–dimensional 
random vector X that has a multivariate normal distribution with mean vector zero 
and correlation matrix Σ, the Gaussian copula is defined as 

1( , ..., )dC u u  = ( )1 1 1 1( ) , ..., ( )d dP X u X uΦ ≤ Φ ≤  
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= ( )1 1
1 1 1 1( ), ..., ( )d dP X X X X− −≤ Φ ≤ Φ  

= ( )1 1
1 1 1( ), ..., ( )d dX X− −Φ Φ Φ  

t-copula is a second example of implicit copula. Suppose that X has a zero mean 
d–dimensional multivariate t–distribution with density function 

1( , ..., )df x x   = 

( )

1 22 1

2

d
t

d

d
x x

νν

ν νπν

+⎛ ⎞−⎜ ⎟− ⎝ ⎠

+⎛ ⎞Γ ⎜ ⎟ ⎛ Σ ⎞⎝ ⎠ +⎜ ⎟⎛ ⎞ ⎝ ⎠Γ Σ⎜ ⎟
⎝ ⎠

 

where  is the correlation matrix and Σ ν  are the degrees of freedom. Analogously 
to the Gaussian copula, the t–copula is given by 

1( , ..., )dC u u  = ( ) ( )( )1 1
1 , ...,dt t u t uν ν

− −
d     (2.5) 

where (u1, . . . , ud) ∈ [0, 1]d, td represents the distribution function of a d-
dimensional random vector with density (2.5) and t ν  denotes the distribution 
function of a standard univariate student–t random variable with ν  degrees of 
freedom. 

3 Multiple Lives Analysis 
The specific problem of dependence analysis considered in the project deals with 
studying associations between several lives. For lives Lj define Xj as “age at death” 
of life Lj random variables. Assume that associated pairs of d–dimensional lives (L1, 
. . . , Ld) are observed during a certain limited period of time T. An observation 
begins simultaneously at random entry age e1 for live L1, e2 for live L2, . . . , and ed 
for live Ld. The observation like this is applied to each observation. This condition 
represents the “left truncation” application to the data. Life Lj is observed until Lj 
dies before the age ej + T or Lj is still alive at age ej + T, in which case the death 
time will not be observed. This condition represents the “right censoring”. 

Therefore, in a sample of Y = (Y1, . . . , Yn), each i–th observation yi of an associated 
pair of lives (Li1, . . . , Lid) may be represented as a vector 

Yi = {(ei1, . . . , eid), (Ti1, . . . , Tid), (δi1, . . . , δid)}     (3.1) 

where tij is the termination time length for life Lij, and δij is the right censoring 
indicator: 

δij = 0, when Tij = T and = 1 when Tij < T. 

The range of application of such structure of observations is frequently 
encountered in health, epydemiologycal, or demographycal studies. In these area of 
study, it is usually considered two lives j = 1, 2 where T1 and T2 may represent 
times to failure of associated organs (eyes, kidneys), see, e.g., [32], [35], or lives of 
twins [1], [17] or lives of married couples. The latter example, playing important 
role in insurance pricing and first analyzed by copula methods in [9], will be the 
numerical example in our project. 
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One of the important tasks in many applications like in the multiple lives–based 
insurance policies, is to estimate the future lifelength probabilities for given entry 
ages. As an example, consider an insurance covering benefits for a married couple, 
like last survivor life annuity. In this case, the interest are usually the joint first–
life survival function  

SFL(t; e1, e2) = Pr{min(X1 – e1, X2 – e2) > t| min(X1 – e1, X2 – e2) > 0}    (3.2) 

and the joint last–survivor function 

SLS(t; e1, e2) = Pr{max(X1 – e1, X2 – e2) > t| min(X1 – e1, X2 – e2) > 0}
 (3.3) 

A very natural approach to the estimation of SFL(t; e1, e2) and SLS(t; e1, e2) is to first 
estimate the bivariate survival function S(t1, t2) as defined in section 2, and then 
use the formulas 

SFL(t; e1, e2) = 1 2

1 2

( ,
( , )

S e t e t
S e e
+ + )

 

and  

SLS(t; e1, e2) = 1 2 1 2 1 2

1 2

( , ) ( , ) ( , )
( , )

S e e t S e t e S e t e t
S e e

+ + + − + +
 

         (3.4) 

We will consider this approach for explaining the numerical data example in the 
final section. 

4 Estimation for Copula Models 
Estimation of S(t1, t2, . . . , td) may be carried out in two stages: at the first stage, 
the marginal survival functions Sj(tj) for j = 1, . . . , d are estimated non–
parametrically (via product–limit estimation method or its modification) or with the 
help of a parametric techniques by proposing a number of parametric distributions 
(popular choices could be Gompertz or Weibull distributions). At the second stage, 
the estimated survival functions are mixed according to some copula models (see 
section 2), and the association parameter is estimated via a statistical estimation 
method we will consider in our study.  

An alternative approach consists of estimating simultaneously parameters of the 
marginal distributions and the association parameters as well. If there is a certain 
information available regarding the marginals, e.g., there exist additional data 
available on the individual lives, it is natural to consider Bayesian estimation 
methods with informative priors on the marginal parameters and non–informative 
prior on the parameter of association. 

In the present project, we will restrict our shelves to only consider the second 
approach as the main interest of our study. Specifically, we will pay attention to 
the case of estimating directly the bivariate survival function as a copula 

S(t1, t2; θ1,θ2, α) = C(S1(t1; θ1), S2(t2; θ2), α) 

where θj for j = 1, 2 are parameters vectors of the marginals and α is the parameter 
of association. In the presence of right censoring, the likelihood function for the 
vector parameter θ = (θ1,θ2, α) with data  y structured as described in (3.1).  
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In this section, we briefly describe the procedure that may possibly be employed to 
estimate the model parameters. Here we discuss a general procedure for estimating 
parameters when a set of independent multivariate observations Xi = (Xi1, . . . , Xid), 
i = 1, . . . , n are given with their corresponding marginal distribution functions 
Fk(.; θk) and density functions fk(.; θk), for k = 1, . . . , d. Consider the random 
vector X = (X1, . . . , Xd)t. Suppose we want to estimate the parametric copula–
based model for X given by 

( )1; , ..., ,dF α α θx  = ( ) ( )( )1 1 1; , ..., ;d d dC F x F xα α  (4.1) 

where Fi(xi; αi) is the distribution function of Xi with parameter vector αi ∈ ipR  
with pi ∈ N for all univariate margins i = 1, . . . , d and C is a copula family 
parameterised by the vector θ ∈ Rq with q ∈ N. Assume that C has a density 
function c given by 

1( , ..., ; )dc u u θ  = 1

1

( , ..., ; )
...

d
d

d

C u u
u u

∂
∂ ∂

θ
    (4.2) 

with ( u1, . . . , ud) ∈ [0,1]d and that Fi has a density fi for all i = 1, . . . , d. For the 
case where the margins are discrete, we denote by fi the probability mass function 
of Xi. As for our applications, margins are absolutely continuous, this will not be 
an issue. The density of the copula–based model (4.1) for X is  

( )1; , ..., ,df θx α α = ( ) ( )( )1 1 1; , ..., ; ;d d dc F x F xα α θ   

    (
1

;
d

i i i
i

f x )α
=
∏    (4.3) 

Suppose that we have n iid d–dimensional vectors of observations (x1, . . . , xn). We 
assume that all the necessary regularity conditions (see [24]) on c and fi for i = 1, . . 
. , d are met. The log–likelihood function for the univariate margins of model (4.1) 
takes the form 

Li(αi; x) = , for i = 1, . . . , d,   (4.4) 
1
l og ( ; )

n

i i j i
j

f x
=
∑ α

while the log–likeihood for the copula model F is 

( )1, ..., , ;dL α α θ x  =   (4.5) 1
1
l og ( ; , ..., , )

n

j d
j

f x
=
∑ α α θ

Assuming that the usual regularity conditions are fulfilled, there is a vector 

solution iα  to each one of the d systems of equations 

( ) ( )
1

; ;
, ...,

i

i i i i

i p

L L
α α

⎛ ⎞∂ ∂
⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

α x α x

i

 = 0, for i = 1, . . . , d  (4.6) 

which is the maximum likelihood estimator (MLE) for the marginal parameters. 
Note that these estimators are obtained independently for each margin.  
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The process of finding estimators from the previous procedure will be complex 
when the function in (4.5) is to be complicated. Instead of using the full maximum 
likelihood, we can use the so-called Inference Function for Margins (IFM) Method. 
This terminology comes from McLeish and Small in [26] and it has been followed by 
authors like Joe in [20] for copula-based model statistical inference. The method 
consists of estimating the model parameters by finding the roots of a conveniently 
defined set of inference functions. In the case of maximum likelihood estimation, 
the inference functions are the partial derivatives of the log–likelihood function. In 
the IFM method, the score functions of the margins and of the copula constitute 
the set of estimating equations. 

The IFM method consists first of obtaining the MLE vectors iα , . . . , dα   for the 
marginal parameters solving (4.6) then substitute these maginal estimates in (4.5) 
to maximise (in most cases numerically) 

L(θ; x, iα , . . . , dα ) = 1
1
l og ( , , ..., ; )

n

j d
j

f x
=
∑ α α θ ,  (4.7) 

in order to estimate θ, or to use the score function of (4.5) and estimate the 

dependence parameter vector θ , solving the following system of equations  

( ) ( )1

1

; , , ..., ; , , ...,
, ...,d d

q

L L
θ θ

⎛ ⎞∂ ∂
⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

θ x α α θ x α α1
 = 0. (4.8) 

This procedure is far more easy numerically and less computatioinally intensive 
than a direct optimisation of (4.5). However, in case it is feasible to obtain the MLE 
for the full vector of model parameters from (4.5), we can use the IFM estimates as 
good starting values for the optimiisation routine. 

Joe in [20] proves that the IFM estimator verifies, under regular conditions (the 
research project will confirm these conditions), the property of asymptotic 
normality, and we have: 

( ) ( )1
0 0, ( )I FMT N −− →θ θ θ0G     (4.9) 

with G(θ0) is the Godambe information matrix. Thus, if we define a score function 

1

11 1 2

( ) , ..., ,d c

d

l l ls
θ θ

′⎛ ⎞∂ ∂ ∂
= ⎜ ∂ ∂ ∂⎝ ⎠

θ
θ ⎟ ,    (4.10) 

where lj denotes the log–likelihood of the jth marginal, and lc the log–likelihood for 
the copula itself, splitting the log-likelihood in two parts l1, . . . , ld for each margin 
and lc for the copula, the Godambe information matrix takes the following form: 

1 1
0( ) ( )G D V D− − ′=θ       (4.11) 

with 

( )sD E ∂⎡ ⎤= ⎢ ⎥∂⎣ ⎦
θ
θ

 and [ ]( ) ( )V E s s ′= θ θ    
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The estimation of this covariance matrix requires us to compute many derivatives. 
Joe in [20] then suggests the use of the jacknife method or other bootstrap 
methods to estimate 

it. Joe [20] points out that the IFM method is highly efficient compared with the ML 
method (we also confirm this in the research project). It is worth noting that the 
IFM method may be viewed as a special case of the generalized method of moments 
(GMM) with an identity weight matrix (see [4]). 

In this project, we will use SAS to code the maximum likelihood procedure and in 
particular, use the Interactive Matrix Language (IML) procedure with optimization 
routines. These routines normally give estimates of the second derivatives of the 
likelihood function so that an estimated asymptotic covariance in (4.11) is a 
standard output. Using these asymptotic results, we can then construct confidence 
intervals for our parameters of interest and develop hypothesis tests. In particular, 
we will be interested in constructing test for the presence of dependence and this 
will largely depend on the choice of the parametric copulas. 

5 Conditional Copula for Joint Survival 
Shemyakin et al in [33] explained that using (unconditional) copula model to 
directly estimate joint survival function S(t1, t2) sometimes proved to be insufficient 
for some paired lives. The main reason for this is that the problem of 
dimensionality will appears when the entry ages of the paired lives do not coincide, 
which is usually happened in the case of the spouses’ lives. Therefore, it seems 
that no single copula model for multivariate survival function is going to provide a 
good tool for estimation of joint first–life and last–survivor probabilities in (3.2) and 
in (3.3) respectively, for paired lives with different ages and association tied to real 
time rather than to the age scale. For more detailed discussion of this problem and 
its consequences, one can find in [34].  

A solution to this controversy, consists in creating separate copula models with 
common structure and common value of the association parameter for each pair of 
entry ages. Instead of mixing two marginal survival functions into a joint bivariate 
function, one can mix two conditional survival functions conditioned to the 
survival of paired lives to their entry ages. This approach appears to be efficient for 
estimation of joint first–life, but faces serious problems when applied to estimation 
of last–survivor probabilities. An alternative but, probably, inferior solution of 
introducing the “age difference” as an additional variable was discussed in [33]. 

Consider the problem of estimating the joint first–life survival function like in (3.2). 
such estimation requires observing of a pair of associated lives until first death. A 
possible problem with the data structure as described in (3.1) in actuarial 
applications consists in the underpinning of the time of the first death in a pair, if 
only the second death brings about a change in the insurance payout.  We will not 
discuss this issue because it is not clear how serious this problem where it can be 
dependeing on the origin of data. 

The idea of conditional copulas is to apply a copula function to conditional survival 
functions instead of the marginals so that  

PFL(t; e1, e2) = C 1 2

1 2

( ) ( ),
( ) ( )

S e t S e t
S e S e

;α
⎛ ⎞+ +
⎜
⎝ ⎠

⎟    (5.1), 
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where the type of copula used could be the same as discussed above. The 
dimensionality problem, which was pointed out in the above, does not arise in this 
situatio, because the joint–life probability is clearly conditioned to the entry ages. If 
the underlying survival distributions of individual lives allow for closed–form 
conditional distributions, this approach does not lead to a substantial increase of 
complexity of the likelihood. For example see [42]. 

Bayesian models based on the conditional copula approach with Weibull marginals 
and stable copulas were applied to martilities of married couples in [34]. The choice 
of priors and hyperparameters for the shape and scale distributions is based on 
the fitness to the existing male and female mortality tables. This choice reflected 
the belief that a substantial amount of prior information on individual male and 
female mortality can be incorporated in a copula model. 

However, this approach does not promise an equally easy success while dealing 
with the joint last–survivor probablities described in (3.3) for the same application 
to mortalities of the married couples. For more detail for this interesting 
phenomena, one can see [40].  

For last–survivor problem, shemyakin et al proposed a reasonable approximation 
for the conditional copula of last survival probabilities (for detailed reasoning, see 
[34], page 10): 

PLS(t; e1, e2) ≈ p1(t; e1 : 0) + p2(t; e2 : 0) – PFL(t; e1, e2),   (5.2) 

where p1(t; e1 : 0) can be interpreted as the probability of a woman alive and 
married at entry age e1 to survive for t more years, and p2 defined similarly. 

This would dictate a different choice of priors. A model, which will make use of 
approximation (5.2), may look like this: 

PLS(t; e1, e2) ≈ p1(t; e1 : 0) + p2(t; e2 : 0) – PFL(t; e1, e2) 

where  

pj(t; ej : 0) = exp 

j j

j j

j j

e t
γ γ

α
β β

⎧ ⎫⎛ ⎞ ⎛ ⎞+⎪ ⎪−⎨⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

⎬ ,   (5.3) 

and the prior distributions for parameters βj and γj are set to reflect that they are 
related not to entire male and female populations, but to the populations of 
married men and women. As it is evident from Table 10 in [8], married men and 
women tend to have lower mortality comparatively to men and women in general. 
When we introduce Weibull priors based on mortality tables, we have to take into 
account this effect, leading to increased values in both scale and shape 
parameters. This modeling paradigm will be considered as one of analysis tools we 
want to apply to the data as an ilustration of the application of copula models 
inference as describe in the previous section.  

6 Data and Analysis 
The most important piece of the project is ilustrating the application of copula 
modeling of multiple lives data to the empirically estimation for the presence of 
dependence in the mortality of married couples. We will use the data coming from 
a huge number of joint last–survivor annuity contracts of a large Indonesian 
insurer in payoff status over 5–year observation period beginning in 1998 and 
ending in 2002. The data structure follows situation in section 3, where we 
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considered right censoring and left truncation to the data. In elicitation of the 
hyperparameters of the Bayesian models we also used Table 10 of [8] providing the 
group mortality rates by age, sex, and marital status. 

We will analyse the data in five ways of modelling. For Model I to IV, we assume 
that marginal survival functions for men and women described by two–parameter 
Weibull distributions with scales βj and shapes γj, where j = 1 corresponds to 
female mortality, and j = 2 to male mortality. For the copula model, we consider 
stable (Gumbel–Hougaard) copula with the association parameter α. 

In Model I, we assume that the independence of male and female mortalities may 
be treated as a degenerate case of stable copula with α = 1. In this model the 
estimates for scale and shape parameters were obtained by maximum likelihood 
method. In Model II, the simultaneous IFM estimation was performed for all five 
parameters (scales, shapes, and association) follows the same likelihood 
constructing paradigm done in [42]. Model III was first introduced in [34] and 
requires Bayesian estimation of five parameters of the conditional copula function 
described in section 5 with the following priors distributions: βj ∼ N(φj,ηj), γj ∼ 
N(μj,σj), π(α) ∝ 1/α, where hyperparameters were determined from US male and 
female mortality tables. The computation of last–survivor probability can be carried 
out with the help of approximate formula (7) in [42].  

Model IV uses the conditional copula function described in section 5 with a choice 
of priors motivated by the discussion in section 6 of [34]. The general type of the 
prior distributions is similar to Model III: βj ∼ N(φj,ηj), γj ∼ N(μj,σj), α ∼ U(1, 1), but 
the choice of hyperparameters is not related to general male and female 
populations, but to married men and women. A possible way is to utilize the 
estimates of the marginal parameters obtained in Model I. This seems consistent 
with the results obtained by fitting paramteric models to group mortality rates in 
Table 10 of [8] and comparing scale and shape parameters of Weibull mortality 
models  for married men and women with those for the general population.  

Model V is the one suggested in the present research project. It uses the 
conditional copula functions described in section 5. The choice of priors 
distributions and the choice of hyperparamaters like the one used in Model IV. In 
this Model, we will not directly assume that marginal survival functions are 
Weibull distributed, but here we infer the marginal survival functions directly from 
the best fitted copula model which we select based on an approach borrowing from 
a statistical inference method. The choice of copula in the Model V is one of the 
issues to resolve in the research project. Joe in [20] and Nelsen in [27] list several 
families of parametric copulas, and we described some of the more common ones 
in this proposal. Choosing the right copula is going to be a challenging aspect of 
the project because even in the theory of statistics, this area is not well–developed. 
Durrleman, et al. in [5] chooses a copula based on the construction of the 
empirical copula, but constructing this in themultivariate case is not 
starightforward. Our suggested strategy is to fit several families of copulas and 
choose among these families the best fitting model. An approach similar to a 
goodness–of–fit arguments may then applied.  

7 Concluding Remark 
This paper lays out the theoretical foundations necessary to develop the solution to 
the problems with which we wish to address in the research project. In summary, 
our project aims to address the following fundamental issues: (1) How to 
empirically estimate and test the presence of dependencies in multiple life times of 
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insured individuals?; (2) How to statistically select the appropriate copula model 
that can be used to approximate the true behaviour of dependence structure of 
spouses life times?; and (3) If there is such presence, what are its implications in 
computing insurance and/or annuity premiums, insurance reserves and/or 
pension liabilities? 

 

Reference 
[1] Anderson, J.E., Louis, T.A., Holm, N.V., and Harvald, B. (1992) Time 

dependent association measures for bivariate survival distributions, J. of the 
Amer. Statist. Assoc., 87, 419, 641-650. 

[2] Bowers, N., Gerber, H., Hickman, J.C., Jones, D.A., and Nesbitt, C. (1997) 
Actuarial Mathematics, Schaumburg, IL: Society of Actuaries. 

[3] Clayton, D.G. (1978) A model for association bivariate tables and its 
application in epidemiological studies of family tendency in chronic disease 
incidence, Biometrika, 65, 141-151. 

[4] Davidson, R. and MascKinnon, J. (1993) Estimation and inference in 
econometrics. Oxford University Press, Oxford. 

[5] Durrleman, V., Nikeghali, A. And Roncalli, T. (2000) “Which Copula is the 
Right One?,” working paper, Groupe de Recherche Operationelle, Credit 
Lyonnais, France. 

[6] Embrechts, P., McNeil, A. J., and Straumann, D. (2002) Correlation and 
dependence in risk management: Properties and pitfalls. In: Risk 
Management: Value at Risk and Beyond (Ed. M. Dempster), Cambridge 
University Press, Cambridge, 176-223. 

[7] Embrechts, P., Lindskog, F., McNeil, A. (2003) Modelling dependence with 
copulas and applications to risk management In: Handbook of Heavy Tailed 
Distributions in Finance, ed. S. Rachev, Elsevier, Chapter 8, 329–384. 

[8] England and Wales. Death rates. (2002) In: Mortality Statistics. Series DH1 
no.35, Office of National Statistics, London, 
http://www.statistics.gov.uk/downloads/ 

[9] Frees, E., Carriere, J. and Valdez, E. (1996) Annuity valuation with 
dependent mortality, Journal of Risk and Insurance, Vol. 63, 229. 

[10] Frees, E. and Valdez, E. (1998) Understanding relationships using copulas, 
Actuarial Research Clearing House, Proceedings, 32nd Actuarial Research 
Conference, August 6-8, 1997, 5. 

[11] Genest, C. (1987) Frank's family of bivariate distributions. Biometrika 74, 3, 
549-555. 

[12] Genest, C., Ghoudi, K., and Rivest, L.-P. (1995) A semiparametric estimation 
procedure of dependence parameters in multivariate families of distributions. 
Biometrika 82, 3, 543-552. 

[13] Genest, C., and Rivest, L.-P. (1993) Statistical inference procedures for 
bivariate Archimedean copulas. J. Amer. Statist. Assoc. 88, 423, 1034-1043. 

[14] Genest, C., and Werker, B. J. M. (2002) Conditions for the asymptotic 
semiparametric efficiency of an omnibus estimator of dependence 

 14

http://www.statistics.gov.uk/downloads/


COPULA INFERENCE FOR MULTIPLE LIVES ANALYSIS–PRELIMINARIES 
 

parameters in copula models. In: Distributions with Given Marginals and 
Statistical Modelling (Ed. C. M. Cuadras, J. Fortiana and J. A. Rodriguez-
Lallena), Kluwer Academic Publishers, Dordrecht, 103-112. 

[15] Hauksson, H. A., Dacorogna, M. M., Domenig, T., MÄuller, U. A., and 
Samorodnitsky, G. (2001) Multivariate extremes, aggregation and risk 
estimation. Quant. Finance 1, 79-95. 

[16] Hickman, J.C. and Jones, D.A. (2002) Discussion of papers already 
published, North Amer. Actuarial J., Vol. 6, 4, 113-114. 

[17] Hougaard, P., Harvald, B., and Holm, N.V. (1992) Measuring the similarities 
between the lifetimes of adult Danish twins born between 1881-1930, J. of 
the Amer. Statist. Assoc., 87, 417, 17-24. 

[18] Hougaard, P. (1986) A class of multivariate failure time distributions, 
Biometrika, 73, 671-678. 

[19] Hougaard, P. (2000) Analysis of Multivariate Survival Data, Springer-Verlag, 
New York-Berlin-Heidelberg. 

[20] Joe, H. (1997) Multivariate Models and Dependence Concepts, Chapman and 
Hall, London. 

[21] Jouanin, J-F, Riboulet, G., and Roncalli, T. (2004) Financial applications of 
copula functions, In: Risk Measures for the 21st Century, ed. G.Szego, John 
Wiley. 

[22] Klugman, S. A., and Parsa, R. (1999) Fitting bivariate loss distributions with 
copulas. Insurance Math. Econom. 24, 139-148. 

[23] Lehmann, E. L. (1991)Theory of Point Estimation. Wadsworth & Brooks, 
Pacific Grove, California. 

[24] Lehmann, E. L., and Casella, G. (1998) Theory of Point Estimation, second ed. 
Springer Texts in Statistics. Springer-Verlag, New York. 

[25] Mashal, R., Naldi, M., and Zeevi, A. (2003) Extreme events and multiname 
credit derivatives, In: Credit Derivatives: The Definitive Guide, Ed. J. Gregory, 
RiskWaters Press. 

[26] McLeish, D. L., and Small, C. G. (1988) The Theory and Applications of 
Statistical Inference Functions, vol. 44 of Lecture Notes in Statistics. Springer-
Verlag, New York. 

[27] Nelsen R. (1999) An Introduction to Copulas, Springer-Verlag, New York. 

[28] Oakes, D. (1982) A model for association in bivariate survival data. J. Roy. 
Statist. Soc. Ser. B 44, 3, 414-422. 

[29] Oakes, D. (1986) Semiparametric inference in a model for association in 
bivariate survival data. Biometrika 73, 2, 353-361. 

[30] Oakes, D. (1989) Bivariate survival models induced by frailties, J. of the 
Amer. Statist. Assoc., 84, 487-493. 

[31] Oakes, D. (1994) Multivariate survival distributions. J. Nonparametr. Statist. 
3, 3-4, 343-354. 

   15 



Y PURWONO 
 

[32] Romeo, J.S., Tanaka, N.I., and Pedroso de Lima, A.C. (2004) Bivariate 
survival modeling: a Bayesian approach based on copulas, Relatorio Tecnico, 
Universidade de Sao Paulo, Sao Paulo, Brasil., RT-MAE 2004-13. 

[33] Shemyakin, A. and Youn, H. (2000) Statistical aspects of joint-life insurance 
pricing, 1999 Proceedings of Amer. Stat. Assoc., 34-38. 

[34] Shemyakin, A. and Youn, H. (2001) Bayesian estimation of joint survival 
functions in  life insurance, In: Bayesian Methods with Applications to 
Science, Policy and Official Statistics, European Communities, 489-496. 

[35] Shih, J.H. and Louis, T.A. (1985) Inferences on the association parameter in 
copula models for bivariate survival data, Biometrika, 51, 1384-1399. 

[36] Sklar, A. (1959) Fonctions de répartition à n dimensions et leurs marges. 
Publ. Inst. Statist. Univ. Paris 8, 229-231. 

[37] Spiegelhalter, D.J., Thomas, A., and Best, N.G. (2003) WinBUGs 1.4. 
Computer Program, Imperial College and MRC Biostatistics Unit, Cambridge. 

[38] Valdez E. A., and Chernih, A. (2003) Empirical estimation of dependence in a 
portfolio of insurance claims–preliminaries, working paper, UNSW, Sidney, 
AU. 

[39] Wang, S. (1997) Aggregation of correlated risk portfolios: Models and 
algorithms. Preprint, Casualty Actuarial Society (CAS). 

[40] Youn, H. and Shemyakin, A. (2001) Pricing practices for joint last survivor 
insurance, Actuarial Research Clearing House, Vol. 2001.1. 

[41] Youn, H., Shemyakin, A., and Herman, E. (2002) A re-examination of joint 
mortality functions, North Amer. Actuarial J., Vol. 6, 1, 166-170. 

[42] Youn, H., and Shemyakin, A. (2004) Copula models of joint survival analysis, 
working Paper, University of St. Thomas, MN, USA. 

 

 

 

YOGO PURWONO: Department of Management 
Faculty of Economics, University of Indonesia 
Depok, INDONESIA 
 
 

 16


	Abstract.  Copula models are becoming increasingly popular tool for modeling dependencies between random variables, especially in such fields as biostatistics, actuarial science, and finance. The purpose of the present paper is to provide preliminary discussion about the project aimed to investigate models and inference methods for multiple lives–based insurance data by means of copula. In the life contingency models for several individuals,  the life time of insured individuals have been assumed to be mutually independent. This means that for combination of lives, the life time probability of one live and life time of another lives do not directly impact each other. Independence assumption in multiple lives contigency models is often considered becauce this is more mathematically tractable to compute straightforwardly actuarial present value or benefit premiums and reserves. However, this may be unrealistic because intutitively, life times of several associated individuals, such as married couples, can exhibit “dependence” because of such conditions as common disaster, common life style, or the broken–heart syndrome. Using actual data on mortality of spouses that hold a last–survivor annuity policies in Indonesia, this research project will apply the basic concepts of copula inference in empirically investigating the presence of dependence in multiple lives–based insurance contract. There is a growing number of papers that explore the issue of dependencies on joint life times contracts, but no paper that has provided a detail lists of inference methods in copula modeling for multiple lives theory. 
	1 Introduction 
	2 Modelling Dependence with Copulas  
	3 Multiple Lives Analysis 
	4 Estimation for Copula Models 

	5 Conditional Copula for Joint Survival 
	6 Data and Analysis 
	7 Concluding Remark 
	Reference 



